References

“A New Dawn for Public Employment Services. OECD.” 2024. June 12, 2024. https://www.oecd.org/en/publications/2024/06/a-new-dawn-for-public-employment-services_25e1e70e.html.
Agencia Española de Protección de Datos. 2021. “Risk Management and Impact Assessment in the Processing of Personal Data.” Agencia Española de Protección de Datos (AEPD). https://www.aepd.es/guides/risk-management-and-impact-assessment-in-processing-personal-data.pdf.
Ahmad, Tazeem, Mohd Adnan, Saima Rafi, Muhammad Azeem Akbar, and Ayesha Anwar. 2024. MLOps-Enabled Security Strategies for Next-Generation Operational Technologies.” In Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering, 662–67.
Aliferis, Constantin, and Gyorgy Simon. 2024. “Artificial Intelligence (AI) and Machine Learning (ML) for Healthcare and Health Sciences: The Need for Best Practices Enabling Trust in AI and ML.” In Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls, edited by Gyorgy J. Simon and Constantin Aliferis, 1–31. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-39355-6_1.
Almada, Marco, and Nicolas Petit. 2023. “The EU AI Act: A Medley of Product Safety and Fundamental Rights?” Rochester, NY. https://doi.org/10.2139/ssrn.4308072.
Barberá, Isabel. 2023a. AI Possible Risks & Mitigations – Named Entity Recognition.” European Data Protection Board. https://www.edpb.europa.eu/system/files/2024-07/ai-risks_d1named-entity-recognition_edpb-spe-programme_en.pdf.
———. 2023b. AI Possible Risks & Mitigations – Optical Character Recognition.” European Data Protection Board. https://www.edpb.europa.eu/system/files/2024-06/ai-risks_d2optical-character-recognition_edpb-spe-programme_en_2.pdf.
Breaux, Travis. 2020. An Introduction to Privacy for Technology Professionals. International Association of Privacy Professionals.
Carlini, Nicholas, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, et al. 2021. “Extracting Training Data from Large Language Models.” In 30th USENIX Security Symposium (USENIX Security 21), 2633–50.
Chang, J Morris, Di Zhuang, G Samaraweera, and G Dumindu Samaraweera. 2023. Privacy-Preserving Machine Learning. Simon; Schuster.
Commission, European. 2024. “Regulatory Framework on Artificial Intelligence.” https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai.
Desai, Anokhy. 2023. “5 Things to Know about AI Model Cards.” https://iapp.org/news/a/5-things-to-know-about-ai-model-cards.
Engelfriet, Arnoud. 2024. The Annotated AI Act. Amsterdam, Netherlands: ICTRecht B.V. https://ictrecht.nl.
European Data Protection Board (EDPB). 2024. “Opinion 28/2024 on Certain Data Protection Aspects Related to the Processing of Personal Data in the Context of AI Models.” https://www.edpb.europa.eu/system/files/2024-12/edpb_opinion_202428_ai-models_en.pdf.
European Data Protection Supervisor. 2024. TechSonar Report 2025.” European Data Protection Supervisor. https://www.edps.europa.eu/system/files/2024-11/24-11-15_techsonar_2025_en.pdf.
Floridi, Luciano. 2023. The Ethics of Artificial Intelligence: Principles, Challenges, and Opportunities.
Fujdiak, Radek, Petr Mlynek, Pavel Mrnustik, Maros Barabas, Petr Blazek, Filip Borcik, and Jiri Misurec. 2019. “Managing the Secure Software Development.” In 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1–4. IEEE.
Gal, Michal S, and Orla Lynskey. 2023. “Synthetic Data: Legal Implications of the Data-Generation Revolution.” Iowa L. Rev. 109: 1087.
Garrido, Gonzalo Munilla, Johannes Sedlmeir, Ömer Uludağ, Ilias Soto Alaoui, Andre Luckow, and Florian Matthes. 2022. “Revealing the Landscape of Privacy-Enhancing Technologies in the Context of Data Markets for the IoT: A Systematic Literature Review.” Journal of Network and Computer Applications 207: 103465.
Gichoya, Judy Wawira, Kaesha Thomas, Leo Anthony Celi, Nabile Safdar, Imon Banerjee, John D Banja, Laleh Seyyed-Kalantari, Hari Trivedi, and Saptarshi Purkayastha. 2023. AI Pitfalls and What Not to Do: Mitigating Bias in AI.” The British Journal of Radiology 96 (1150): 20230023.
Goldblum, Micah, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Mądry, Bo Li, and Tom Goldstein. 2022. “Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses.” IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2): 1563–80.
Hermanns, Holger, Anne Lauber-Rönsberg, Philip Meinel, Sarah Sterz, and Hanwei Zhang. 2024. AI Act for the Working Programmer.” arXiv Preprint arXiv:2408.01449.
Hinder, Fabian, Valerie Vaquet, and Barbara Hammer. 2024. “One or Two Things We Know about Concept Drift—a Survey on Monitoring in Evolving Environments. Part a: Detecting Concept Drift.” Frontiers in Artificial Intelligence 7: 1330257.
Hou, Xinyi, Yanjie Zhao, Shenao Wang, and Haoyu Wang. 2025. “Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions.” arXiv Preprint arXiv:2503.23278.
Huyen, Chip. 2022. Designing Machine Learning Systems. " O’Reilly Media, Inc.".
International Organization for Standardization. 2022a. Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML) (ISO Standard No. 23053:2022). International Organization for Standardization. https://www.iso.org/standard/74438.html.
———. 2022b. Information Technology — Artificial Intelligence — Artificial Intelligence Concepts and Terminology (ISO/IEC Standard No. 22989:2022). International Organization for Standardization. https://www.iso.org/standard/74296.html.
———. 2023. Information Technology — Security Techniques — Guidelines for Privacy Impact Assessment (ISO/IEC Standard No. 29134:2023). International Organization for Standardization. https://www.iso.org/standard/86012.html.
Jarmul, Katharine. 2023. Practical Data Privacy. " O’Reilly Media, Inc.".
Ji, Jiaming, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan, et al. 2023. “Ai Alignment: A Comprehensive Survey.” arXiv Preprint arXiv:2310.19852.
Kaplan, Guy, Uri Katz, and Avi Lumelsky. 2024. ShellTorch Explained: Multiple Vulnerabilities in PyTorch Model Server (TorchServe) (CVSS 9.9, CVSS 9.8) Walkthrough.” https://www.oligo.security/blog/shelltorch-explained-multiple-vulnerabilities-in-pytorch-model-server.
Kore, Ali, Elyar Abbasi Bavil, Vallijah Subasri, Moustafa Abdalla, Benjamin Fine, Elham Dolatabadi, and Mohamed Abdalla. 2024. “Empirical Data Drift Detection Experiments on Real-World Medical Imaging Data.” Nature Communications 15 (1): 1887.
Kreuzberger, Dominik, Niklas Kühl, and Sebastian Hirschl. 2023. “Machine Learning Operations (MLOps): Overview, Definition, and Architecture.” IEEE Access 11: 31866–79. https://doi.org/10.1109/ACCESS.2023.3262138.
Lee, Hao-Ping (Hank), Yu-Ju Yang, Thomas Serban Von Davier, Jodi Forlizzi, and Sauvik Das. 2024. “Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of AI Privacy Risks.” In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. CHI ’24. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3613904.3642116.
Leslie, David, Carina Rincón, Michael Briggs, Anna Perini, Sameer Jayadeva, Adriana Borda, Sarah Jane Bennett, et al. 2024. AI Explainability in Practice. The Alan Turing Institute.
MacCoun, Robert, and Saul Perlmutter. 2015. “Blind Analysis: Hide Results to Seek the Truth.” Nature 526 (7572): 187–89.
Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. “Model Cards for Model Reporting.” In Proceedings of the Conference on Fairness, Accountability, and Transparency, 220–29.
Morris, Kief. 2025. Infrastructure as Code. " O’Reilly Media, Inc.".
Near, Joseph P., and Chiké Abuah. 2021. Programming Differential Privacy. Vol. 1. https://programming-dp.com/.
OECD. 2024. “Explanatory Memorandum on the Updated OECD Definition of an AI System.” 8. Paris: OECD Publishing. https://doi.org/10.1787/623da898-en.
OWASP. 2024. AI Exchange.” 2024. https://owaspai.org/.
OWASP AI Exchange Community. 2025. OWASP AI Exchange.” https://owaspai.org.
Ramasesh, Vinay Venkatesh, Aitor Lewkowycz, and Ethan Dyer. 2022. “Effect of Scale on Catastrophic Forgetting in Neural Networks.” In International Conference on Learning Representations.
Raschka, Sebastian. 2024. Machine Learning q and AI: 30 Essential Questions and Answers on Machine Learning and AI. No Starch Press.
Rocher, Luc, Julien M Hendrickx, and Yves-Alexandre De Montjoye. 2019. “Estimating the Success of Re-Identifications in Incomplete Datasets Using Generative Models.” Nature Communications 10 (1): 3069.
Schwartz, Roy, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. “Green Ai.” Communications of the ACM 63 (12): 54–63.
Shumailov, Ilia, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. 2024. AI Models Collapse When Trained on Recursively Generated Data.” Nature 631 (8022): 755–59.
Slattery, Peter, Alexander K Saeri, Emily AC Grundy, Jess Graham, Michael Noetel, Risto Uuk, James Dao, Soroush Pour, Stephen Casper, and Neil Thompson. 2024. “The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks from Artificial Intelligence.” arXiv Preprint arXiv:2408.12622.
Solove, Daniel J. 2005. “A Taxonomy of Privacy.” U. Pa. L. Rev. 154: 477.
Solove, Daniel J., and Woodrow Hartzog. 2025. “The Great Scrape: The Clash Between Scraping and Privacy.” California Law Review. https://doi.org/10.2139/ssrn.4884485.
Stark, Luke, and Jevan Hutson. 2021. “Physiognomic Artificial Intelligence.” Fordham Intell. Prop. Media & Ent. LJ 32: 922.
Tanaka, Fabio Henrique Kiyoiti Dos Santos, and Claus Aranha. 2019. “Data Augmentation Using GANs.” arXiv Preprint arXiv:1904.09135.
The Hamburg Commissioner for Data Protection and Freedom of Information. 2024. “Discussion Paper: Large Language Models and Personal Data.” https://datenschutzhamburg.de/fileadmin/user_upload/HmbBfDI/Datenschutz/Informationen/240715_Discussion_Paper_Hamburg_DPA_KI_Models.pdf.
Tsamados, Andreas, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo, and Luciano Floridi. 2021. “The Ethics of Algorithms: Key Problems and Solutions.” In Ethics, Governance, and Policies in Artificial Intelligence, edited by Luciano Floridi, 97–123. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_8.
Vallet, Félicien. 2022. “Petite Taxonomie Des Attaques Des Systèmes d’IA, Translated as "Small Taxonomy of Attacks on AI Systems".” https://linc.cnil.fr/sites/linc/files/atoms/files/linc_cnil_dossier-securite-systemes-ia.pdf.
VanHoudnos, Nathan, Carol Smith, Matthew Churilla, Shing-Hon Lau, Lauren McIlvenny, and Greg Touhill. 2024. “Counter AI: What Is It and What Can You Do about It?”
Véliz, Carissa. 2020. “Data Privacy and the Individual.” https://philpapers.org/archive/VLIPM.pdf.
Wang, Zhibo, Jingjing Ma, Xue Wang, Jiahui Hu, Zhan Qin, and Kui Ren. 2022. “Threats to Training: A Survey of Poisoning Attacks and Defenses on Machine Learning Systems.” ACM Computing Surveys 55 (7): 1–36.
Wehrli, Samuel, Corinna Hertweck, Mohammadreza Amirian, Stefan Glüge, and Thilo Stadelmann. 2022. “Bias, Awareness, and Ignorance in Deep-Learning-Based Face Recognition.” AI and Ethics 2 (3): 509–22.
Wu, Tong, Ashwinee Panda, Jiachen T Wang, and Prateek Mittal. 2023. “Privacy-Preserving in-Context Learning for Large Language Models.” arXiv Preprint arXiv:2305.01639.
Zaman, ANK, Charlie Obimbo, and Rozita A Dara. 2017. “An Improved Differential Privacy Algorithm to Protect Re-Identification of Data.” In 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), 133–38. IEEE.
Zeng, Shenglai, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, et al. 2024. “The Good and the Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (Rag).” arXiv Preprint arXiv:2402.16893.
Zhang, Haibo, Toru Nakamura, Takamasa Isohara, and Kouichi Sakurai. 2023. “A Review on Machine Unlearning.” SN Computer Science 4 (4): 337.
Zhang, Xinrui, and Jason Jaskolka. 2022. “Conceptualizing the Secure Machine Learning Operations (SecMLOps) Paradigm.” In 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS), 127–38. https://doi.org/10.1109/QRS57517.2022.00023.